

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #821430 to machine a 8-40 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00027
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

```
RPM = (SFM \times 3.82) / Cutter Diameter
     = (150 \times 3.82) / .120
     = 4775
Linear Feed (IPM) = RPM x IPT x Number of Flutes
                   = 4775 \times .00027 \times 2
                   = 2.57
```

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adi Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(.164 - .120) / .164] \times 2.57
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                   = [(.164 + .120) / .164] \times 2.57
                   = 4.45
```

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

```
For Easy Machinability
                             = 2 Radial Pass at full Axial Depth
For Moderate Machinability = 3 Radial Passes at full Axial Depth
For Difficult Machinability = 4 Radial Passes at full Axial Depth
```

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 4775 RPM, .68 IPM and make 3 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major	er of Radial P	ial Passes*					
Thread	Thread	Easy	Moderate	Difficult				
Size	Diameter	Machinabilty	Machinabilty	Machinabilty				
00	0.047	2	3	4				
0	0.060	2	3	4				
1	0.073	2	3	4				
2	0.086	2	3	3				
3	0.099	2	3	3				
4	0.112	2	3	4				
5	0.125	2	3	3				
6	0.138	2	3	4				
8	0.164	2	2	3				
10	0.190	2	3	4				
12	0.216	2	2	3				
1/4	0.250	2	2	3				
5/16	0.312	2	2	3				
3/8	0.375	2	2	3				
7/16	0.437	2	2	3				
1/2	0.500	2	2	3				
9/16	0.562	2	2	3				
5/8	0.625	2	2	3				
3/4	0.750	2	2	3				
7/8	0.875	2	2	3				
1	1.000	2	3	4				

Table 1

Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitches, the number of passes may be reduced by 1 pass.

Table 2

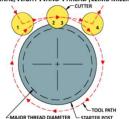
Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down

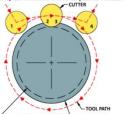

from top

Step 3-4: Cutter moves helically Step 4-5: Cutter exits part along arcing tool path

while maintaining "7" feed

Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)


Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down

from top

Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path

while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path

while maintaining "Z" feed

								: (≤ 271 l						
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter 0.047 0.062 0.078 0.093 0.125 0.187 0.250 0.312 0.375 0.500 0.625												
ALUMINUM ALLOYS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
Casting (2xx, 5xx, 7xx, 8xx)	750	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371	
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	100011	.00010	.00022				.00101	.00134	.00100		.00000	.00071	
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750	.00012		.00020	.00024	.00032			.00139	.00167	.00223			
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700		.00016				.00068	.00091						
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650											.00278	.00334	
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475													
Wrought - 5%-8% Si (4xxx)	1000													
Wrought - 8%-12% Si (4xxx)	800													
MAGNESIUM ALLOYS	1500	00044	.00018	.00022	.00027	.00036	.00076	.00101	.00154	20100	.00248	.00309	.00371	
ZINC ALLOYS	800	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00246	.00309	.00371	
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225													
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500													
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225													
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00013	.00017	.00022	.00026	.00035	.00061	.00082	.00129	.00156	.00207	.00259	.00311	
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500													
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225													
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550													
	Hardware 00.07 De (070.044 HDs)													

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads

Characteristics: Long- XL Reach Series: 8214xx, 8214xx-C3

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness \leq 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)												Hardness: 38-45 Rc (353-421 HBn)												
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter								SEM	Chip Load (IPT) By Cutter Diameter															
	31	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	3	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
CARBON STEELS Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00126	.00152	.00203	.00253	.00304	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00112	.00135	.00180	.00225	.00270	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS	\Box							, ,																		-
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00126	.00152	.00203	.00253	.00304	-	-	-	-	-	-	-	-	-	-	-	-	· [
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00084	.00101	.00135	.00169	.00203	100	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00072	.00086	.00115	.00143	.00172
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00076	.00091	.00122	.00152	.00182	90	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00064	.00077	.00103	.00129	.00155
TOOL STEELS	\Box																									
A, L, O, P, W series	200	.00011	.00015	.00019	.00022	.00030	.00044	.00059	.00099	.00119	.00158	.00198	.00238	100	.00009	.00013	.00016	.00019	.00025	.00038	.00050	.00084	.00101	.00135	.00168	.00202
D, H, M, T, S series	200	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00090	.00108	.00144	.00180	.00216	90	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00076	.00092	.00122	.00153	.00184
TITANIUM ALLOYS	150	.00011	.00015	.00019	.00022	.00030	.00044	.00059	.00086	.00104	.00139	.00173	.00208	75	.00009	.00013	.00016	.00019	.00025	.00038	.00050	.00074	.00088	.00118	.00147	.00177
HIGH TEMP ALLOYS	\Box																									
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00009	.00012	.00015	.00018	.00025	.00037	.00050	.00073	.00088	.00117	.00146	.00176	50	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00062	.00075	.00099	.00124	.00149