

Metric Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #761430 to machine an M6-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00027
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

```
RPM = (SFM \times 3.82) / Cutter Diameter
     = (150 \times 3.82) / .189
     = 3031
Linear Feed (IPM) = RPM x IPT x Number of Flutes
                   = 3031 \times .00027 \times 4
                   = 3.27 in/min
```

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(.236 - .189) / .236] \times 3.27
                 = .65 in/min
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                   = [(.236 + .189) / .236] \times 3.75
                   = 5.89 in/min
```

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

```
For Easy Machinability
                            = 2 Radial Pass at full Axial Depth
For Moderate Machinability = 3 Radial Passes at full Axial Depth
For Difficult Machinability = 4 Radial Passes at full Axial Depth
```

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

In this example, the tool would run at 3031 RPM, .65 IPM and make 3 Radial Passes

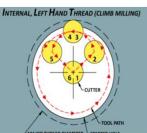
Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Tool		Thread	Numbe	er of Radial P	adial Passes*					
Thread Size	Dian Millimeters	Inches	Easy	Moderate	Difficult					
M1.6	1.50	0.059	Machinabilty 2	Machinabilty 3	Machinabilty 4					
M2	2.00	0.079	2	3	4					
M2.5	2.50	0.098	2	3	4					
M3	3.00	0.118	2	3	4					
M3.5	3.50	0.138	2	3	4					
M4	4.00	0.157	2	3	4					
M5	5.00	0.197	2	3	4					
M6	6.00	0.236	2	3	4					
M8	8.00	0.315	2	2	3					
M10	10.00	0.394	2	2	3					
M12	12.00	0.472	2	2	3					
M14	14.00	0.551	2	2	3					
M15	15.00	0.591	2	2	3					
M16	16.00	0.630	2	2	3					
M17	17.00	0.669	2	2	3					
M18	18.00	0.709	2	2	3					
M20	20.00	0.787	2	2	3					
M22	22.00	0.866	2	2	3					
M24	24.00	0.945	2	2	3					

Table 1

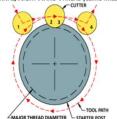
Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitches, he number of passes may be reduced by 1 pass.


Table 2

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool nath while "7" feeds up from bottom
Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

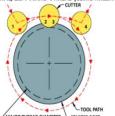

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down from top

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "7" feed

Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)


Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down

from ton Step 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path

while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up

from bottom Sten 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

						Hardness	s: < 28 R	· (< 271 Þ	IBn)				
MATERIAL	_						Load (IPT) E						
	SFM	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
ALUMINUM ALLOYS													
Casting (2xx, 5xx, 7xx, 8xx)	750	.00009	.00012	.00015	.00018	.00024	.00050	.00068	.00103	.00124	.00165	.00206	.00248
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	.00000	.00012	.00010	.00010	.55521	.00000	.00000	.00100	.50121	.55155	.00200	.00210
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750						.00045						
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700		.00011	.00013	.00016	.00022		.00061	.00093	.00111	.00149	.00186	.00223
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00008											
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475												
Wrought - 5%-8% Si (4xxx)	1000												
Wrought - 8%-12% Si (4xxx)	800												
MAGNESIUM ALLOYS	1500	.00009	.00012	.00015	.00018	.00024	.00050	.00068	.00103	.00124	.00165	.00206	.00248
ZINC ALLOYS	800											.00200	.00240
COPPER ALLOYS High Coppers - 90%+ (C1xxx)	225												
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500								.00086			.00173	.00207
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225												
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00009	.00011	.00014	.00017	.00023	.00041	.00055		.00104	.00138		
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500												
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225												
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550												

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - Metric

Characteristics: 10x Neck

Series: 7614xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)													Hardness: 38-45 Rc (353-421 HBn)												
MATERIAL	SFM		Chip Load (IPT) By Cutter Diameter									SFM	Chip Load (IPT) By Cutter Diameter														
	U. III	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	O	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
CARBON STEELS Free-Machining/Low Carbon steels, 10xx-1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00007	.00009	.00011	.00013	.00018	.00040	.00054	.00084	.00101	.00135	.00169	.00203	-	-	-	-	-	-	-	-	-	-	-	-	-	
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00007	.00009	.00011	.00013	.00018	.00040	.00054	.00075	.00090	.00120	.00150	.00180	-	-	-	-	-	-	-	-	-	-	-	-	-	
STAINLESS STEELS																											
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00007	.00009	.00011	.00013	.00018	.00040	.00054	.00084	.00101	.00135	.00169	.00203	-	-	-	-	-	-	-	-	-	-	-	-	-	
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00056	.00068	.00090	.00113	.00135	100	.00006	.00008	.00010	.00011	.00015	.00023	.00031	.00048	.00057	.00077	.00096	.00115	
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00051	.00061	.00081	.00101	.00122	90	.00006	.00008	.00010	.00011	.00015	.00023	.00031	.00043	.00052	.00069	.00086	.00103	
TOOL STEELS																											
A, L, O, P, W series	200	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00066	.00079	.00106	.00132	.00158	100	.00006	.00008	.00011	.00013	.00017	.00025	.00034	.00056	.00067	.00090	.00112	.00135	
D, H, M, T, S series	200	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00060	.00072	.00096	.00120	.00144	90	.00006	.00008	.00010	.00011	.00015	.00023	.00031	.00051	.00061	.00082	.00102	.00122	
TITANIUM ALLOYS	150	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00058	.00069	.00092	.00116	.00139	75	.00006	.00008	.00011	.00013	.00017	.00025	.00034	.00049	.00059	.00079	.00098	.00118	
HIGH TEMP ALLOYS Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00006	.00008	.00010	.00012	.00017	.00025	.00033	.00049	.00059	.00078	.00098	.00117	50	.00005	.00007	.00009	.00010	.00014	.00021	.00028	.00041	.00050	.00066	.00083	.00099	