

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #820330 to machine a 8-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00032
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

$$RPM = (SFM \times 3.82) / Cutter Diameter = (150 \times 3.82) / .120$$

$$= (150 \times 3.82)$$

= 4775

Linear Feed (IPM) = RPM x IPT x Number of Flutes $= 4775 \times .00032 \times 4$ = 6.11

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed $= [(.164 - .120) / .164] \times 6.11$ = 1.64

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed $= [(.164 + .120) / .164] \times 6.11$

= 10.58

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

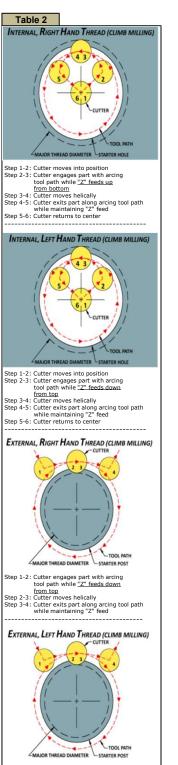
```
= 2 Radial Pass at full Axial Depth
For Easy Machinability
```

For Difficult Machinability = 3 Radial Passes at full Axial Depth

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion


In this example, the tool would run at 4775 RPM, 1.64 IPM and make 2 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major Number of Radial Passes*										
Thread	Thread	Easy	Moderate	Difficult							
Size	Diameter	Machinabilty	Machinabilty	Machinabilty							
00	0.047	2	3	4							
0	0.060	2	3	4							
1	0.073	2	3	4							
2	0.086	2	3	3							
3	0.099	2	3	3							
4	0.112	2	3	4							
5	0.125	2	3	3							
6	0.138	2	3	4							
8	0.164	2	2	3							
10	0.190	2	3	4							
12	0.216	2	2	3							
1/4	0.250	2	2	3							
5/16	0.312	2	2	3							
3/8	0.375	2	2	3							
7/16	0.437	2	2	3							
1/2	0.500	2	2	3							
9/16	0.562	2	2	3							
5/8	0.625	2	2	3							
3/4	0.750	2	2	3							
7/8	0.875	2	2	3							
1	1.000	2	3	4							

per of Radial Passes are based on the coarsest pitch by thread size. For fin itches, the number of passes may be reduced by 1 pass.

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

						Hardness	s: ≤ 28 Ro	: (≤ 271 H	-IBn)								
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter															
	0	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750				
ALUMINUM ALLOYS	750			.00027	.00033	.00044	.00093			.00227	.00303	.00378					
Casting (2xx, 5xx, 7xx, 8xx)		.00017	.00022					.00124	.00189				.00454				
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000																
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750																
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700																
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00015	.00020	.00025	.00029	.00040	.00083	.00111	.00170	.00204	.00272	.00340	.00408				
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475																
Wrought - 5%-8% Si (4xxx)	1000																
Wrought - 8%-12% Si (4xxx)	800																
MAGNESIUM ALLOYS	1500	.00017	.00022	.00027	.00033	.00044	.00093	.00124	.00189	.00227	.00303	.00378	.00454				
ZINC ALLOYS	800		.00022	.00027						loozer		.00070	.00404				
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225																
Brass (Copper Zinc alloys, C2xxx, C3xxxx, C4xxxx, C66400-C69800)	500																
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225																
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00016	.00021	.00026	.00031	.00042	.00075	.00100	.00158	.00190	.00254	.00317	.00380				
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500																
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxx)	225																
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550																

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads Characteristics: Medium/Medium Reach Series: 8203xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)										Hardness: 38-45 Rc (353-421 HBn)															
MATERIAL	SFM						Load (IPT) B							SFM							y Cutter Dia						
CARBON STEELS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00012	.00016	.00021	.00025	.00033	.00074	.00099	.00154	.00186	.00248	.00309	.00371	-	-	-	-	-	-	-	-	-	-	-	-	-	
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00012	.00016	.00021	.00025	.00033	.00074	.00099	.00137	.00165	.00220	.00275	.00330	-	-	-	-	-	-	-	-	-	-	-	-	-	
STAINLESS STEELS																											
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00012	.00016	.00021	.00025	.00033	.00074	.00099	.00154	.00186	.00248	.00309	.00371	-	-	-	-	-	-	-	-	-	-	-	-	-	
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00103	.00124	.00165	.00206	.00248	100	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00088	.00105	.00140	.00175	.00210	
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00093	.00111	.00149	.00186	.00223	90	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00079	.00095	.00126	.00158	.00189	
TOOL STEELS																											
A, L, O, P, W series	200	.00014	.00018	.00023	.00027	.00036	.00054	.00073	.00121	.00145	.00194	.00242	.00290	100	.00012	.00015	.00019	.00023	.00031	.00046	.00062	.00103	.00123	.00165	.00206	.00247	
D, H, M, T, S series	200	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00110	.00132	.00176	.00220	.00264	90	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224	
TITANIUM ALLOYS	150	.00014	.00018	.00023	.00027	.00036	.00054	.00073	.00106	.00127	.00169	.00212	.00254	75	.00012	.00015	.00019	.00023	.00031	.00046	.00062	.00090	.00108	.00144	.00180	.00216	
HIGH TEMP ALLOYS																											
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00011	.00015	.00019	.00023	.00030	.00045	.00061	.00089	.00107	.00143	.00179	.00215	50	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00076	.00091	.00122	.00152	.00182	