

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #993940 to machine a 10-28 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00023
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

RPM = (SFM x 3.82) / Cutter Diameter
= (150 x 3.82) / .135
= 4244
Linear Feed (IPM) = RPM x IPT x Number of Flutes
=
$$4244 \times .00021 \times 4$$

= 3.56

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adi Internal Feed = [(Maior Thread Dia - Cutter Dia) / Maior Thread Dia] x Linear Feed
                  = [(.190 - .135) / .190] \times 3.56
                  = 1.03
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(.190 + .135) / .190] \times 3.56
                  = 6.08
```

4. Determine Number of Radial Passes using Table 1

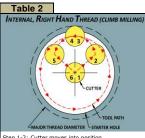
(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

```
For Easy Machinability
                            = 2 Radial Pass at full Axial Depth
For Moderate Machinability = 3 Radial Passes at full Axial Depth
For Difficult Machinability = 4 Radial Passes at full Axial Depth
```

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion


In this example, the tool would run at 4244 RPM, 1.03 IPM and make 3 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major Number of Radial Passes*											
Thread	Thread		Moderate	Difficult								
Size	Diameter	Easy Machinabilty	Machinabilty	Machinabilty								
00	0.047	2	3	4								
0	0.060	2	3	4								
1	0.073	2	3	4								
2	0.086	2	3	3								
3	0.099	2	3	3								
4	0.112	2	3	4								
5	0.125	2	3	3								
6	0.138	2	3	4								
8	0.164	2	2	3								
10	0.190	2	3	4								
12	0.216	2	2	3								
1/4	0.250	2	2	3								
5/16	0.312	2	2	3								
3/8	0.375	2	2	3								
7/16	0.437	2	2	3								
1/2	0.500	2	2	3								
9/16	0.562	2	2	3								
5/8	0.625	2	2	3								
3/4	0.750	2	2	3								
7/8	0.875	2	2	3								
1	1.000	2	3	4								

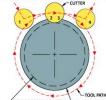
Number of Radial Passes are based on the coarsest pitch by thread size. For finer itches, the number of passes may be reduced by 1 pass

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

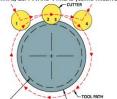
Step 5-6: Cutter returns to center


Sten 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down from top

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center


EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "7" feeds down

Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

EXTERNAL LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing from bottom
Step 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path

MATERIAL					·	lardness							
MATERIAL	SFM	0.047	0.062	0.078	0.093	0.125	oad (IPT) E 0.187	y Cutter Di 0.250	0.312	0.375	0.500	0.625	0.750
ALUMINUM ALLOYS		0.017	0.002	0.010	0.000	0.120	0.107	0.200	0.012	0.070	0.000	0.020	0.700
Casting (2xx, 5xx, 7xx, 8xx)	750	.00011	.00014	.00017	.00021	.00028	.00059	.00079	.00120	.00144	.00193	.00241	.00289
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000				.00021								
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750					.00025	.00053	.00071	.00108	.00130			
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700			.00016	.00019						.00173	.00217	
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00009	.00012										.00260
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475												
Wrought - 5%-8% Si (4xxx)	1000												
Wrought - 8%-12% Si (4xxx)	800												
IAGNESIUM ALLOYS 1500		.00011	.00014	.00017	.00021	.00028	.00059	.00079	.00120	.00144	.00193	.00241	.00289
ZINC ALLOYS	800	.00011	.00014	.00017	.00021	.00020	.00033	.00073	.00120	.00144	.00193	.00241	.00203
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225												
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500									.00121			
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225												.00242
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00010	.00013	.00017	.00020	.00027	.00048	.00064	0064 .00101		.00161	.00202	
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500												
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225												
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550												

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads

Characteristics: XXL Reach Series: 9939xx

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-10% if coated.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

MATERIAL		Hardness: 29-37 Rc (279-344 HBn)													Hardness: 38-45 Rc (353-421 HBn) Chip Load (IPT) By Cutter Diameter												
	SFM		Chip Load (IPT) By Cutter Diameter 0.047 0.062 0.078 0.093 0.125 0.187 0.250 0.312 0.375 0.500 0.625 0.750											SFM													
CARBON STEELS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00098	.00118	.00158	.00197	.00236	-	-	-	-	-	-	-	-	-	-	-	-	-	
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 52Lxxx, 52xx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00087	.00105	.00140	.00175	.00210	-	-	-	-	-	-	-	-	-	-	-	÷	-	
STAINLESS STEELS																											
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00098	.00118	.00158	.00197	.00236	-	-	-	-	-	-	-	-	-	-	-	÷	-	
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00066	.00079	.00105	.00131	.00158	100	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00056	.00067	.00089	.00112	.00134	
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00059	.00071	.00095	.00118	.00142	90	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00050	.00060	.00080	.00100	.00120	
TOOL STEELS																											
A, L, O, P, W series	200	.00009	.00011	.00014	.00017	.00023	.00035	.00046	.00077	.00092	.00123	.00154	.00185	100	.00007	.00010	.00012	.00015	.00020	.00029	.00039	.00065	.00079	.00105	.00131	.00157	
D, H, M, T, S series	200	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00070	.00084	.00112	.00140	.00168	90	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00059	.00071	.00095	.00119	.00143	
TITANIUM ALLOYS	150	.00009	.00011	.00014	.00017	.00023	.00035	.00046	.00067	.00081	.00108	.00135	.00162	75	.00007	.00010	.00012	.00015	.00020	.00029	.00039	.00057	.00069	.00092	.00115	.00137	
HIGH TEMP ALLOYS																1	1		1	<u> </u>			 			$\overline{}$	
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00007	.00010	.00012	.00014	.00019	.00029	.00039	.00057	.00068	.00091	.00114	.00137	50	.00006	.00008	.00010	.00012	.00016	.00024	.00033	.00048	.00058	.00077	.00097	.00116	