

Multi-Form Thread Mills are a fast way to threadmill a part. Since they use the entire length of cut in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum up to and including Hardened Steels.

Speeds & Feeds calculations : 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material 2. Calculate the Speed (RPM) and Linear Feed (IPM) 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
4. Determine correct number of radial passes at full axial depth
Example: Tool #V547751 to machine a 1/2-20 internal thread in 17-4 stainless steel
1. From Speeds & Feeds chart (next page), SFM is 200 and Chip Load (IPT) is .00101
2. Calculate Speed (RPM) and Linear Feed (IPM)
RPM = (SFM x 3.82) / Cutter Diameter = (200 x 3.82) / .370 = 2065
Linear Feed (IPM) = RPM x IPT x Number of Flutes = 2065 x .00101 x 4 = 8.3
3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)
Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed = [(.562370) / .562] x 8.3 = 2.8
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed = [(.562 + .370) / .562] x 8.3 = 13.8
4. Determine Number of Radial Passes using Table 1
For Easy Machinability = 1 Radial Pass at full Axial Depth For Moderate Machinability = 2 Radial Passes at full Axial Depth For Difficult Machinability = 2 Radial Passes at full Axial Depth
Definitions: Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc
5. Conclusion
In this example, the tool would run at 2065 RPM, 2.8 IPM and make 2 Radial Passes

Setup & Use:

1. Check software and input proper feed values (Linear or Adjusted)

- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
 To break in the tool, reduce feed rates by 75% on the on the first one to two holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1											
Thread	Major										
Size	Thread Diameter	Easy	Moderate Machinabilty	Difficult Machinabilty							
0-80	0.060	Machinabilty 2	Machinability 3	4							
1-64	0.073	2	3	4							
2-56	0.086	2	3	3							
3-48	0.099	2	3	3							
4-40	0.112	2	3	3							
5-40	0.125	2	3	3							
5-44	0.125	2	3	3							
6-32 8-32	0.138 0.164	2 2	2 2	3							
8-36	0.164	1	2	2							
10-24	0.190	2	2	3							
10-28	0.190	1	2	2							
10-32	0.190	1	2	2							
12-24	0.216	2	2	3							
12-28	0.216	1	2	2							
1/4-20 1/4-28	0.250 0.250	2 1	2 1	3							
1/4-28 5/16-18	0.250	1 2	1 2	2							
5/16-18 5/16-24	0.312	1	1	2							
3/8-16	0.375	2	2	3							
3/8-24	0.375	1	1	2							
7/16-14	0.437	2	2	3							
7/16-20	0.437	1	1	2							
1/2-13	0.500	2	2	3							
1/2-20 9/16-12	0.500 0.562	1 2	1 2	2 3							
9/16-12 9/16-18	0.562	1	2	2							
5/8-11	0.625	2	2	3							
5/8-18	0.625	1	2	2							
3/4-10	0.750	2	2	3							
3/4-12	0.750	1	2								
3/4-16	0.750	1	2	2							
7/8-9	0.875	2 1	2	3							
7/8-14 1-8	0.875 1.000	1	2 3	2 4							
1-12	1.000	2	2	2							
1-14	1.000	2	2	2							
NPT/NPTF											
1/16-27	0.312	1	1	2							
1/8-27	0.405	1	1	2							
1/4-18	0.540	1	1	2							
3/8-18 1/2-14	0.675 0.840	1 1	1 2	2 3							
1/2-14 3/4-14	1.050	1	2	3							
1-11.5	1.315	1	2	3							
2-11.5	2.375	1	2	3							
METRIC											
M4.5 x .75	.177 (4.5mm)	1	2	2							
M5 X .8	.197 (5mm)	1	2	2							
M6 X .75 M6 X 1	.236 (6mm) .236 (6mm)	1 1	2 2	2 2							
M8 X .75	.230 (0mm) .315 (8mm)	1	2	2							
M8 X 1.25	.315 (8mm)	2	2	3							
M10 X 1	.394 (10mm)	1	1	2							
M10 X 1.5	.394 (10mm)	2	2	3							
M12 X 1	.472 (12mm)	1	1	2							
M12 X 1.75	.472 (12mm)	2	2	3							
M14 X 1.5	.551 (14mm)	1	2	2							
M14 X 2.0 M16 X 1	.551 (14mm) 630 (16mm)	2 1	2 2	3 2							
M16 X 2.0	.630 (16mm) .630 (16mm)	2	2	3							
M10 X 2.0 M18 X 1.5	.709 (18mm)	1	2	2							
			2	3							
M18 X 2	.709 (18mm)	2	2	3							

Table 2 INTERNAL, RIGHT HAND THREAD (CLIMB MILLING) Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while <u>"2" feeds up</u> from bottom Step 3-4: Cutter moves helically one rotation Step 4-5: Cutter moves helically one rotation Step 4-5: Cutter exits part along arcing tool path while maintaining "2" feed Step 5-6: Cutter returns to center INTERNAL, LEFT HAND THREAD (CLIMB MILLING) Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down from too Step 2-4: Cutter moves helically one rotation Step 4-5: Cutter moves helically one rotation Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed Step 5-6: Cutter returns to center EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING) TOOL PATH MAJOR THREAD DIAMETER - STARTER POST Step 1-2: Cutter engages part with arcing tool path while <u>"Z" feeds down</u> tool path while <u>Z Treus down</u> from top Step 2-3: Cutter moves helically one rotation Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

--

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom Step 2-3: Cutter moves helically one rotation Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

READ DI AMETER -TOOL PATH

Hardened Steels:

For 46-54 Rc: 130 SFM, 75% of IPT (from 29-37 Rc section) 3-4 Radial Passes at full Axial Depth

For 55-60 Rc: 80 SFM, 50% of IPT (from 29-37 Rc section) 4-5 Radial Passes at full Axial Depth

Material Guide		Hardness	SFM	Chip Load (IPT) By Cutter Diameter											
				3/64	1/16	5/64	3/32	1/8	3/16	1/4	5/16	3/8	1/2	5/8	3/4
Carbon Steel	10XX, 11XX, 12XX, 12LXX, ASTM A27, ASTM A36	29-37 Rc (279-344 HBn)	450	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00125	.00150	.00200	.00250	.00300
Low Alloy Steel	13XX, 41XX, 43XX, 51XX, 86XX, 93XX	29-37 Rc (279-344 HBn)	550	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338
	A, L, O, P, W series	29-37 Rc (279-344 HBn)	325	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00110	.00132	.00176	.00220	.00264
Tool Steel		38-45 Rc (353-421 HBn)	200	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224
100151221	D, H, M, T, S series	29-37 Rc (279-344 HBn)	225	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00100	.00120	.00160	.00200	.00240
		38-45 Rc (353-421 HBn)	180	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00085	.00102	.00136	.00170	.00204
Austenitic Stainless Steel	Nitronic 50, Nitronic 60, 301, 303, 304, 304L, Incoloy 27-7MO, 316, 316L, 321, 347	29-37 Rc (279-344 HBn)	400	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338
Martensitic & Ferritic		29-37 Rc (279-344 HBn)	350	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00125	.00150	.00200	.00250	.00300
Stainless Steel	403, 410, 416, 420, 440, 430, 446 -	38-45 Rc (353-421 HBn)	200	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224
	15-5, 17-4, Carpenter 450,	29-37 Rc (279-344 HBn)	200	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00100	.00120	.00160	.00200	.00240
PH Stainless Steel	Carpenter 465	38-45 Rc (353-421 HBn)	160	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00085	.00102	.00136	.00170	.00204
	Hastelloy C-22, Inconel 625, Waspaloy, René 41, Inconel 718, - Incoloy 20	29-37 Rc (279-344 HBn)	90	.00010	.00014	.00017	.00020	.00028	.00041	.00055	.00081	.00098	.00130	.00163	.00195
Nickel Alloy		38-45 Rc (353-421 HBn)	70	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00069	.00083	.00111	.00138	.00166
		29-37 Rc (279-344 HBn)	275	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00096	.00116	.00154	.00193	.00231
Titanium Alloy	Ti 3Al-2.5V, Ti 6Al-4V, Ti 10V-2Fe-3Al -	38-45 Rc (353-421 HBn)	150	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00082	.00098	.00131	.00164	.00196
	2014, 5062, 6061, 7050, 7075, 7475	≤ 28 Rc (≤ 271 HBn)	1200	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
Wrought Aluminum Alloy	5% - 8% Si (4XXX)		1000	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371
	8% - 12% Si (4XXX)		800												
Cast Aluminum Alloy	319.0, 328.0, 355.0, 360.0, 380.0, 383.0, 390.0, 520.0, 535.0	≤ 28 Rc (≤ 271 HBn)	750	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
	3% - 5% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		750	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371
	5% - 8% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		700												
	8% - 12% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		650												
	12% - 16% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		475												
Copper Alloy	Cu-ETP, CuBe2, CuZn30, CuZn36Pb3, CuZn10, CuSn5	≤28 Rc (≤271 HBn)	450-1000	.00014	.00019	.00024	.00029	.00038	.00068	.00091	.00144	.00173	.00231	.00288	.00346
Magnesium Alloys Zinc Alloys		≤ 28 Rc (≤ 271 HBn)	1500 800	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
Zinc Alloys			000												

General Notes:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 10%-20% if coated. For ferrous materials with hardness < 28 Rc, chip loads can be increased 10%-20%.

If you require additional information, Valor Holemaking has a team of technical experts available to assist you through even the most challenging applications. Please contact us at 866-840-1505 or Valortech@harveyperformance.com.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.