

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #736990 to machine a 1-5 internal thread in 6061 aluminum

- 1. From Speeds & Feeds chart (next page), SFM is 300 and Chip Load (IPT) is .00344
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

```
RPM = (SFM \times 3.82) / Cutter Diameter
      = (300 \times 3.82) / .62
Linear Feed (IPM) = RPM \times IPT \times Number of Flutes
                     = 1848 \times .00344 \times 6
                     = 38.1
```

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(1.00 - .620) / 1.00] \times 37
                  = 14.5
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                   = [(1.00 + .620) / 1.00] \times 37
```

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

For Easy Machinability = 2 Radial Pass at full Axial Depth For Moderate Machinability = 3 Radial Passes at full Axial Depth For Difficult Machinability = 4 Radial Passes at full Axial Depth

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 1848 RPM, 14.5 IPM and make 2 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1												
Tool	Major											
Thread	Thread	Easy	Moderate	Difficult								
Size	Diameter	Machinabilty	Machinabilty	Machinabilty								
1/4	0.250	2	2	3								
3/8	0.375	2	2	3								
7/16	0.437	2	2	3								
1/2	0.500	2	2	3								
5/8	0.625	2	2	3								
3/4	0.750	2	2	3								
7/8	0.875	2	2	3								
1	1.000	2	3	4								

Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitches, the number of passes may be reduced by 1 pass.

Table 2

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up

from bottom Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path

while maintaining "Z" feed Step 5-6: Cutter returns to center

Step 1-2: Cutter moves into position

Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down from top

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down from top

Step 2-3: Cutter moves helically
Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path

					H			: (≤ 271 l						
MATERIAL	SFM	0.047	Chip Load (IPT) By Cutter Diameter 0.047 0.062 0.078 0.093 0.125 0.187 0.250 0.312 0.375 0.500											
ALUMINUM ALLOYS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
Casting (2xx, 5xx, 7xx, 8xx)	220	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413	
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	300	.00010	.00020	.00020	.00000	.00010	.00001	.00110	.00172	.00200		.00011	.50110	
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	220			.00022	.00027									
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	200		.00018			.00036	.00076	.00101	.00154	.00186	.00248			
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	200	.00014										.00309	.00371	
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	140													
Wrought - 5%-8% Si (4xxx)	300													
Wrought - 8%-12% Si (4xxx)	230													
MAGNESIUM ALLOYS		.00015	.00020	00005	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413	
ZINC ALLOYS	170	.00015	.00020	.00025	.00030	.00040	.00064	.00113	.00172	.00206	.00275	.00344	.00413	
COPPER ALLOYS	50													
High Coppers - 90%+ (C1xxxx) Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	120													
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	50													
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	120	.00014	.00019	.00024	.00029	.00038	.00068	.00091	.00144	.00173	.00231	.00288	.00346	
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	120													
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	50													
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	130													
	Hardware 00 07 Pa (070 044 HPa)													

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - ACME

Characteristics: 3x Reach Internal ACME

Series: 7369xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness \leq 28 Rc, chip loads can be increased 3%-5%

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)													Hardness: 38-45 Rc (353-421 HBn)											
MATERIAL		Chin Lond (IDT) Bu Cutton Disputer													Chiral and (IDT) Du Cutton Dismoster											
	SFM	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	SFM	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
CARBON STEELS																										
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	140	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	50	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00125	.00150	.00200	.00250	.00300	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	110	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	50	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00094	.00113	.00150	.00188	.00225	25	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00080	.00096	.00128	.00159	.00191
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	40	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00084	.00101	.00135	.00169	.00203	25	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00072	.00086	.00115	.00143	.00172
TOOL STEELS																										
A, L, O, P, W series	65	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00110	.00132	.00176	.00220	.00264	30	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224
D, H, M, T, S series	65	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00100	.00120	.00160	.00200	.00240	30	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00085	.00102	.00136	.00170	.00204
TITANIUM ALLOYS	55	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00096	.00116	.00154	.00193	.00231	30	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00082	.00098	.00131	.00164	.00196
HIGH TEMP ALLOYS																										-
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	50	.00010	.00014	.00017	.00020	.00028	.00041	.00055	.00081	.00098	.00130	.00163	.00195	50	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00069	.00083	.00111	.00138	.00166