

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #826530 to machine an M6-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00031
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

RPM = (SFM x 3.82) / Cutter Diameter $= (150 \times 3.82) / .189$ = 3031Linear Feed (IPM) = RPM x IPT x Number of Flutes

 $= 3031 \times .00031 \times 4$ = 3.75 in/min

- 3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)
 - Adi Internal Feed = [(Major Thread Dia Cutter Dia) / Major Thread Dia] x Linear Feed $= [(.236 - .189) / .236] \times 3.75$
 - = .74 in/min
 - Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed $= [(.236 + .189) / .236] \times 3.75$
 - = 46.75 in/min
- 4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

For Easy Machinability = 2 Radial Pass at full Axial Depth For Moderate Machinability = 3 Radial Passes at full Axial Depth For Difficult Machinability = 4 Radial Passes at full Axial Depth

Definitions

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc

Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 3031 RPM, .74 IPM and make 3 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major 1	Chread	Number of Radial Passes*										
Thread	Diam		Easy	Moderate	Difficult								
Size	Millimeters	Inches	Machinabilty	Machinabilty	Machinabilty								
M1.6	1.50	0.059	2	3	4								
M2	2.00	0.079	2	3	4								
M2.5	2.50	0.098	2	3	4								
M3	3.00	0.118	2	3	4								
M3.5	3.50	0.138	2	3	4								
M4	4.00	0.157	2	3	4								
M5	5.00	0.197	2	3	4								
M6	6.00	0.236	2	3	4								
M8	8.00	0.315	2	2	3								
M10	10.00	0.394	2	2	3								
M12	12.00	0.472	2	2	3								
M14	14.00	0.551	2	2	3								
M15	15.00	0.591	2	2	3								
M16	16.00	0.630	2	2	3								
M17	17.00	0.669	2	2	3								
M18	18.00	0.709	2	2	3								
M20	20.00	0.787	2	2	3								
M22	22.00	0.866	2	2	3								
M24	24.00	0.945	2	2	3								

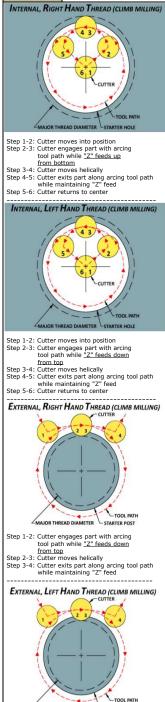


Table 2

MAJOR THREAD DIAMETER STARTER POST

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path

	Hardness: ≤ 28 Rc (≤ 271 HBn)													
MATERIAL	SFM	0.047	0.062	0.070	0.000			By Cutter Dia		0.075	0.500	0.005	0.750	
ALUMINUM ALLOYS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	
Casting (2xx, 5xx, 7xx, 8xx)	750													
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	.00011	.00014	.00017	.00021	.00028	.00059	.00079	.00120	.00144	.00193	.00241	.00289	
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700					- - - - - - - - - - - - - - - - - - -	0025 .00053		- - - - - - - - - - - - - - - - - - -	.00130				
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00009	.00012	.00016	.00019	.00025		.00071	.00108		.00173	.00217	.00260	
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475	-												
Wrought - 5%-8% Si (4xxx)	1000													
Wrought - 8%-12% Si (4xxx)	800													
MAGNESIUM ALLOYS	1500								- - - -					
		.00011	.00014	.00017	.00021	.00028	.00059	.00079	.00120	.00144	.00193	.00241	.00289	
ZINC ALLOYS	800													
COPPER ALLOYS ligh Coppers - 90%+ (C1xxxx)	225					2 2 2 2 2 2 2 2			2 2 2 2 2 2 2 2					
Brass (Copper Zinc alloys, C2xxx, C3xxxx, C4xxxx, C66400-C69800)	500													
Phosphor Bronzes (Copper Tin alloys,	225													
C5xxxx) Aluminum Bronzes (Copper Aluminum allovs, C60600-C64200)	500	.00010	.00013	.00017	.00020	.00027	.00048	.00064	.00101	.00121	.00161	61 .00202 .00242		
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500				.00020							.00202	.00212	
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225													
Cast Copper Alloys, C7XXX) Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550													

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - Metric Characteristics: 8x Neck Series: 8265xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety

		Hardness: 29-37 Rc (279-344 HBn) Chio Load (IPT) By Cutter Diameter											Hardness: 38-45 Rc (353-421 HBn) Chip Load (IPT) By Cutter Diameter													
MATERIAL	SFM			0.070										SFM			0.070									0.770
CARBON STEELS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00098	.00118	.00158	.00197	.00236	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00087	.00105	.00140	.00175	.00210	-	-	-	-		-			-		-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00008	.00010	.00013	.00016	.00021	.00047	.00063	.00098	.00118	.00158	.00197	.00236	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00066	.00079	.00105	.00131	.00158	100	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00056	.00067	.00089	.00112	.00134
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00059	.00071	.00095	.00118	.00142	90	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00050	.00060	.00080	.00100	.00120
TOOL STEELS																1										
A, L, O, P, W series	200	.00009	.00011	.00014	.00017	.00023	.00035	.00046	.00077	.00092	.00123	.00154	.00185	100	.00007	.00010	.00012	.00015	.00020	.00029	.00039	.00065	.00079	.00105	.00131	.00157
D, H, M, T, S series	200	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00070	.00084	.00112	.00140	.00168	90	.00007	.00009	.00011	.00013	.00018	.00027	.00036	.00059	.00071	.00095	.00119	.00143
TITANIUM ALLOYS	150	.00009	.00011	.00014	.00017	.00023	.00035	.00046	.00067	.00081	.00108	.00135	.00162	75	.00007	.00010	.00012	.00015	.00020	.00029	.00039	.00057	.00069	.00092	.00115	.00137
HIGH TEMP ALLOYS																1										
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00007	.00010	.00012	.00014	.00019	.00029	.00039	.00057	.00068	.00091	.00114	.00137	50	.00006	.00008	.00010	.00012	.00016	.00024	.00033	.00048	.00058	.00077	.00097	.00116