

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #771840 to machine a 10-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00025
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

```
RPM = (SFM \times 3.82) / Cutter Diameter
     = (150 \times 3.82) / .135
     = 4244
Linear Feed (IPM) = RPM x IPT x Number of Flutes
                    = 4244 \times .00025 \times 4
                    = 4.24
```

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed
                 = [(.190 - .135) / .190] \times 4.24
                 = 1.22
```

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed $= [(.190 + .135) / .190] \times 4.24$ = 7.25

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

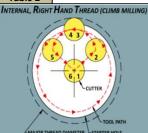
For Easy Machinability = 2 Radial Pass at full Axial Depth For Moderate Machinability = 3 Radial Passes at full Axial Depth For Difficult Machinability = 4 Radial Passes at full Axial Depth

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 4244 RPM, 1.22 IPM and make 3 Radial Passes

Setup & Use:


- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Tool	Major	Number of Radial Passes*											
Thread		Thread Easy Moderate											
Size	Diameter	Machinabilty	Machinabilty	Difficult Machinabilty									
00	0.047	2	3	4									
0	0.060	2	3	4									
1	0.073	2	3	4									
2	0.086	2	3	3									
3	0.099	2	3	3									
4	0.112	2	3	4									
5	0.125	2	3	3									
6	0.138	2	3	4									
8	0.164	2	2	3									
10	0.190	2	3	4									
12	0.216	2	2	3									
1/4	0.250	2	2	3									
5/16	0.312	2	2	3									
3/8	0.375	2	2	3									
7/16	0.437	2	2	3									
1/2	0.500	2	2	3									
9/16	0.562	2	2	3									
5/8	0.625	2	2	3									
3/4	0.750	2	2	3									
7/8	0.875	2	2	3									
1	1.000	2	3	4									

Table 1

Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitches, the number of passes may be reduced by 1 pass.

Table 2

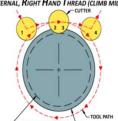
Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

INTERNAL, LEFT HAND THREAD (CLIMB MILLING)



Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool nath while "7" feeds down from top
Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down

from top

Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

		Hardness: ≤ 28 Rc (≤ 271 HBn)													
MATERIAL	_							y Cutter Dia							
	SFM	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		
ALUMINUM ALLOYS															
Casting (2xx, 5xx, 7xx, 8xx)	750	.00012	.00015	.00019	.00023	.00031	.00066	.00088	.00134	.00161	.00215	.00268	.00322		
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	.00012	.00015	.00019	.00023								.00022		
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750		.00014	.00018								.00241			
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700				.00021	.00028	.00059	.00079	.00120	.00145	.00193				
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00011											.00290		
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475														
Wrought - 5%-8% Si (4xxx)	1000														
Wrought - 8%-12% Si (4xxx)	800														
MAGNESIUM ALLOYS	1500	.00012	.00015	.00019	.00023	.00031	.00066	.00088	.00134	.00161	.00215	.00268	.00322		
ZINC ALLOYS	800											.00200	.00022		
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225														
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500														
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225												.00270		
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00011	.00015	.00019	.00022	.00030	.00053	.00071	.00112	.00135	.00180	.00225			
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500														
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225														
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550														

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads

Characteristics: 1.5 XL Reach

Series: 7718xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)														Hardness: 38-45 Rc (353-421 HBn) Chip Load (IPT) By Cutter Diameter										
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter											SFM													
		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
CARBON STEELS Free-Machining/Low Carbon steels, 10xx-1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00009	.00012	.00015	.00017	.00023	.00053	.00070	.00110	.00132	.00176	.00219	.00263	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 15xx, 4xxx, 5xxx & 5xLxx, 5xxx & 5xLxx, 5xxx & 5xLxx, 5xxx & 5xLxx, 5xxx & 5xx	200	.00009	.00012	.00015	.00017	.00023	.00053	.00070	.00097	.00117	.00156	.00195	.00234	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00009	.00012	.00015	.00017	.00023	.00053	.00070	.00110	.00132	.00176	.00219	.00263	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00073	.00088	.00117	.00146	.00176	100	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00062	.00075	.00099	.00124	.00149
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00066	.00079	.00105	.00132	.00158	90	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00056	.00067	.00090	.00112	.00134
TOOL STEELS																										
A, L, O, P, W series	200	.00010	.00013	.00016	.00019	.00026	.00039	.00051	.00086	.00103	.00137	.00172	.00206	100	.00008	.00011	.00014	.00016	.00022	.00033	.00044	.00073	.00088	.00117	.00146	.00175
D, H, M, T, S series	200	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00078	.00094	.00125	.00156	.00187	90	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00066	.00080	.00106	.00133	.00159
TITANIUM ALLOYS	150	.00010	.00013	.00016	.00019	.00026	.00039	.00051	.00075	.00090	.00120	.00150	.00180	75	.00008	.00011	.00014	.00016	.00022	.00033	.00044	.00064	.00077	.00102	.00128	.00153
HIGH TEMP ALLOYS																										
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00008	.00011	.00013	.00016	.00021	.00032	.00043	.00063	.00076	.00101	.00127	.00152	50	.00007	.00009	.00011	.00014	.00018	.00027	.00036	.00054	.00065	.00086	.00108	.00129