MATERIAL						Har	rdness:										1.													
MATERIAL	SFM -	0.015	0.031	0.047	0.062	0.078			ck Diamet 0.187		0.312	0.375	0.500	0.625	0.750				A .	71										
ALUMINUM ALLOYS																			4/	T L				U						
Casting (2xx, 5xx, 7xx, 8xx)	750	.00017	.00034	.00052	.00068	.00086	.00102	.00138	.00206	.00275	.00343	.00413	.00550	.00688	.00825				s & F											
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000																		Table		ail Cut	ters - F	arker H	Hannifir	ı O-Rin	ng Dove	etail Ro	ughers		
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750																		T Drop 7152xx		llowand	ce								
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700																													
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx) Casting - 12%-16% Si (3xx, A3xx,	650 475	.00015	.00031	.00047	.00061	.00077	.00092	.00124	.00185	.00248	.00309	.00371	.00495	.00619	.00743			Produ	ct Note	es:										
C3xx, 4xx, A4xx, B4xx)																		Post	ed Radia If mach									epth		
Wrought - 5%-8% Si (4xxx)	1000																	O-R	ing groo	_								ed mus	t he red	uced
Wrought - 8%-12% Si (4xxx)	800																		ccount fo						polatio					acca
MAGNESIUM ALLOYS	1500	.00017	.00034	.00052	.00068	.00086	.00102	.00138	.00206	.00275	.00343	.00413	.00550	.00688	.00825															
ZINC ALLOYS	800																													
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225			7																										
Brass (Copper Zinc alloys, C2xxxx,	500																	Gener	al Note	es:										
C3xxxx, C4xxxx, C66400-C69800) Phosphor Bronzes (Copper Tin alloys,	225																	All p	osted sp	eed and										
C5xxxx) Aluminum Bronzes (Copper Aluminum	500																		mal setu ed. For											
alloys, C60600-C64200) Silicon Bronzes (Copper Silicon alloys,		.00013	.00027	.00041	.00055	.00069	.00082	.00110	.00165	.00220	.00275	.00330	.00440	.00550	.00660				u requir											
C64700-C66100) Copper Nickels, Nickel Silvers (Copper	500																	assi	st you th	rough e	ven the	most ch	allengin	ig applic						
Nickel alloys, C7xxxx)	225																		arveyte		- , .									
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550																		NING: Cu other appr							ent regula	itions req	uire use c	r sarety (glasses
		Hardness: 29-37 Rc (279-344 HBn)																Hard	ness: 3	8-45 Rc	(353-4	21 HBn	1)							
MATERIAL	SFM -	0.015	0.031	0.047	0.062	0.078			ck Diamet 0.187		0.312	0.375	0.500	0.625	0.750	SFM	0.015	0.031	0.047	0.062	0.078			ck Diamet 0.187		0.312	0.375	0.500	0.625	0.750
CARBON STEELS		0.0.0	0.001	0.041	0.002	0.070	0.000	0.120	0.101	0.200	0.0.2	0.070	0.000	0.020	0.700		0.0.0	0.001	0.011	0.002	0.0.0	0.000	020	0.101	0.200	0.0.2	0.070	0.000	0.020	0.700
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00006	.00012	.00018	.00023	.00029	.00035	.00047	.00071	.00095	.00118	.00142	.00189	.00236	.00284	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00005	.00011	.00016	.00021	.00027	.00032	.00043	.00065	.00086	.00108	.00130	.00173	.00216	.00259	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																														
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00006	.00012	.00018	.00023	.00029	.00035	.00047	.00071	.00095	.00118	.00142	.00189	.00236	.00284	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00005	.00011	.00016	.00021	.00027	.00032	.00043	.00065	.00086	.00108	.00130	.00173	.00216	.00259	100	.00003	.00005	.00008	.00011	.00013	.00016	.00022	.00032	.00043	.00054	.00065	.00086	.00108	.00130
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00003	.00007	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00067	.00081	.00108	.00135	.00162	90	.00002	.00003	.00005	.00007	.00008	.00010	.00014	.00020	.00027	.00034	.00041	.00054	.00068	.00081
TOOL STEELS																														
A, L, O, P, W series	200	.00005	.00011	.00016	.00021	.00027	.00032	.00043	.00065	.00086	.00108	.00130	.00173	.00216	.00259	100	.00003	.00005	.00008	.00011	.00013	.00016	.00022	.00032	.00043	.00054	.00065	.00086	.00108	.00130
D, H, M, T, S series	150	.00003	.00007	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00067	.00081	.00108	.00135	.00162	90	.00002	.00003	.00005	.00007	.00008	.00010	.00014	.00020	.00027	.00034	.00041	.00054	.00068	.00081
TITANIUM ALLOYS	150	.00003	.00007	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00067	.00081	.00108	.00135	.00162	75	.00002	.00003	.00005	.00007	.00008	.00010	.00014	.00020	.00027	.00034	.00041	.00054	.00068	.00081
HIGH TEMP ALLOYS	一十																													
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00003	.00007	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00067	.00081	.00108	.00135	.00162	50	.00002	.00003	.00005	.00007	.00008	.00010	.00014	.00020	.00027	.00034	.00041	.00054	.00068	.00081

O-Ring Rougher Guide

Dovetail and O-ring style cutters have a variety of applications ranging from customized grooves to tricky seals. Unfortunately, they are very fragile due to their trapezoidal profile of a large Cutter Diameter with a smaller Neck Diameter. This combination of features demands specific machining parameters to avoid breakage.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the rougher and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for Angular Velocity due to Circular Interpolation
- 4. Determine Radial Passes at full axial depth
- 5. Repeat steps 1-4 with the paired cutter
- 6. Conclusion
- 7. Additional Tips

Example: Tool #715221 is roughing out a o-ring groove that will fit a AS568-204 seal in 4140 steel at 32 Rc

- The Cutter Diameter for the tool is .113" and is used to find SFM and calculate Speed (RPM).
 The Neck Diameter is .079" and is used to find Chip Load (IPT) and calculate Linear Feed (IPM).
 Using the Speeds & Feeds chart (next page), SFM is 200 and the Chip Load (IPT) is .00016.
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

PM	=	(SFM x 3.82) / Cutter Diameter
	=	(200 x 3.82) / .113
	=	6761

Linear Feed (IPM) = RPM x IPT x Number of Flutes = $6761 \times .00027 \times 2$

= 3.65

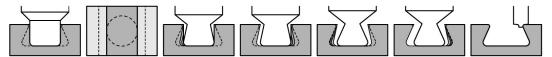
3. Adjust Linear Feed (see O-Ring Feed Rate Adjustment chart)

- 4. Using Table 1, locate the Item # and determine the Max Radial DOC and the Number of Radial Passes needed at full Axial depth. Then using Table 3, determine the actual descending radial stepover for each pass:
 - 4 Radial Passes at 46%, 25%, 18%, and 11% of .017 Max Radial Depth of Cut.
- 5. Using Table 2, find the paired O-Ring Cutter. Repeat steps 1-4 using the paired cutter. Make sure to adjust the feed rate and radial passes when doing so.

Tool #23921, 6761 RPM, 2.16 IPM adjusted to 1.69, 9 radial passes at 64%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% of .0335 Max Radial Depth of Cut.

6. Conclusion

In this example, the rougher, Tool #715221, would run at 6761 RPM, 3.65 IPM and make 4 radial passes of .0078, .0042, .0031, .0019 on each side of the groove at full axial depth.


Then the cutter, Tool #23921, would run at 6761 RPM, 1.69 IPM, and make 9 radial passes of .0214, .0027, .0023, .0020, .0017, .0013, .0010, .0007, .0003 on each side of the groove at full axial depth.

7. Additional Tips

Please note that tools are very fragile (some more than others) due to reduced neck design and flute runout through neck. Given that torque is generated on the larger head diameter and is multiplied as it is transferred to neck of tool, care must be taken when using these tools. Each successive stepover will increase tool engagement, requiring a descending radial stepover to avoid

Setup and Application (Series 7152xx and 239xx for use alongside Series 239xx without drophole)

- Rough out slot with appropriate O-Ring Slotting End Mill (see series 565xx) or with other comparable end mill.
- Insert O-Ring Rougher into slot at full axial depth.
- Mill multiple passes with descending radial stepover as calculated using Tables 1 & 3 on both sides of part.
- Insert paired O-Ring Cutter (see table 3) into roughed out slot at full axial depth.
- Mill multiple passes with descending radial stepover as calculated using Tables 1 & 3 on both sides of part.
- These tools are able to mill both Full and Half O-Ring grooves. As such, a corner radius at the top of the part must be machined for final groove form (see series 170xx).

TABLE 1									
Item ID	Max Radia	Radial Passes per Side							
item ib	DOC	≤ 28 Rc	29 - 37 Rc	38 - 45 Rc					
715207	0.0080	2	3	4					
715214	0.0150	3	4	5					
715221	0.0170	3	4	5					
715228	0.0300	3	4	5					
715235	0.0360	3	4	5					
715242	0.0470	3	4	5					
23907*	0.0159	6	9	11					
23914*	0.0287	9	11	13					
23921*	0.0335	6	9	11					
23928*	0.0591	9	11	13					
23935*	0.0700	6	9	11					
23942*	0.0896	6	9	11					

*The amount of passes for the listed tools have been adjusted to account for the use of the paired dovetail rougher. **DO NOT** use these numbers without first using the paired rougher.

TABLE 2												
Paired O-Ring Roughers and O-Ring Cutters												
Rougher Item ID	715207	715214	715221	715228	715235	715242						
Cutter Item ID	23907	23914	23921	23928	23935	23942						

TABLE 3	4													
Radial Passes	Percentage of Cutter's Maximum Radial Depth of Cut													
2	70%	30%												
3	50%	30%	20%											
4	46%	25%	18%	11%										
5	46%	25%	16%	8.0%	5.0%									
6*	69%	12%	9.0%	6.0%	3.0%	1.0%								
7*	73%	9.0%	7.0%	5.0%	3.0%	2.0%	1.0%							
9*	64%	8.0%	7.0%	6.0%	5.0%	4.0%	3.0%	2.0%	1.0%					
10*	67%	7.5%	6.5%	5.5%	4.5%	3.5%	2.5%	1.5%	1.0%	0.5%				
11*	62%	8.0%	7.0%	6.0%	5.0%	4.0%	3.0%	2.0%	1.5%	1.0%	0.5%			
12*	63%	7.0%	6.0%	6.0%	5.0%	4.0%	3.0%	2.0%	2.0%	1.0%	0.5%	0.5%		
13*	60%	6.0%	6.0%	5.0%	5.0%	4.0%	4.0%	3.0%	2.0%	2.0%	1.0%	1.0%	0.5%	0.5%