

Metric Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Adjust Chip Load to account for max depth of thread to neck diameter ratio.
- 3. Calculate the Speed (RPM) and Linear Feed (IPM)
- 4. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 5. Determine correct number of radial passes at full axial depth

Example: Tool V086653 to machine an M6-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00045
- 2. Calculate the max depth of thread to neck diameter ratio. Calculate adjusted chip load based on values in Table 3

Neck Length Multiple = (Max depth of thread / Neck Diameter) = (8.5mm / 2.88mm)

Adjusted Chip Load = Adjustment factor x Base Chip Load = 1.15 x .00045 IPT = .00052 IPT

3. Calculate Speed (RPM) and Linear Feed (IPM)

RPM = (SFM x 3.82) / Cutter Diameter

= 3031

Linear Feed (IPM) = RPM x IPT x Number of Flutes = 3031 x .00052 x 4 = 6.30 in/min

.189

4. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed

= [(.236 - .189) / .236] x 6.30 = 1.26 in/min

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed

= [(.236 + .189) / .236] x 6.30

= 11.34 in/min

5. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

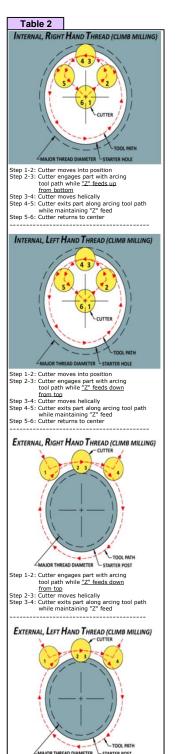
For Easy Machinability	= 2 Radial Pass at full Axial Depth
For Moderate Machinability	= 3 Radial Passes at full Axial Depth
For Difficult Machinability	= 4 Radial Passes at full Axial Depth

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

Setup & Use:


- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)

8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major ⁻	Thread	Number of Radial Passes*							
Thread	Diam		Easy	Moderate	Difficult					
Size	Millimeters	Inches	Machinabilty	Machinabilty	Machinabilty					
M1.6	1.50	0.059	2	3	4					
M2	2.00	0.079	2	3	4					
M2.5	2.50	0.098	2	3	4					
M3	3.00	0.118	2	3	4					
M3.5	3.50	0.138	2	3	4					
M4	4.00	0.157	2	3	4					
M5	5.00	0.197	2	3	4					
M6	6.00	0.236	2	3	4					
M8	8.00	0.315	2	2	3					
M10	10.00	0.394	2	2	3					
M12	12.00	0.472	2	2	3					
M14	14.00	0.551	2	2	3					
M15	15.00	0.591	2	2	3					
M16	16.00	0.630	2	2	3					
M17	17.00	0.669	2	2	3					
M18	18.00	0.709	2	2	3					
M20	20.00	0.787	2	2	3					
M22	22.00	0.866	2	2	3					
M24	24.00	0.945	2	2	3					

* Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitch the number of passes may be reduced by 1 pass.

Table 3							
Neck Length Multiple	Chip Load Adjustment Factor						
3x	1.15						
5x	1.00						
7x	0.90						

Step 1-2: Cutter engages part with arcing

from bottom Sten 2-3: Cutter moves belically

tool path while "Z" feeds up

Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

Hardened Steels:

For 46-54 Rc: 130 SFM, 75% of IPT (from 29-37 Rc section) 3-4 Radial Passes at full Axial Depth

For 55-60 Rc: 80 SFM, 50% of IPT (from 29-37 Rc section) 4-5 Radial Passes at full Axial Depth

Material Guide		Hardness	SFM	Chip Load (IPT) By Cutter Diameter											
				3/64	1/16	5/64	3/32	1/8	3/16	1/4	5/16	3/8	1/2	5/8	3/4
Carbon Steel	10XX, 11XX, 12XX, 12LXX, ASTM A27, ASTM A36	29-37 Rc (279-344 HBn)	600	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338
Low Alloy Steel	13XX, 41XX, 43XX, 51XX, 86XX, 93XX	29-37 Rc (279-344 HBn)	200	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00125	.00150	.00200	.00250	.00300
	A, L, O, P, W series	29-37 Rc (279-344 HBn)	200	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00110	.00132	.00176	.00220	.00264
Tool Steel	A, E, O, F, W Series	38-45 Rc (353-421 HBn)	100	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224
	D, H, M, T, S series	29-37 Rc (279-344 HBn)	200	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00100	.00120	.00160	.00200	.00240
		38-45 Rc (353-421 HBn)	90	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00085	.00102	.00136	.00170	.00204
Austenitic Stainless Steel	Nitronic 50, Nitronic 60, 301, 303, 304, 304L, Incoloy 27-7MO, 316, 316L, 321, 347	29-37 Rc (279-344 HBn)	450	.00011	.00015	.00019	.00022	.00030	.00067	.00090	.00140	.00169	.00225	.00281	.00338
Martensitic & Ferritic		29-37 Rc (279-344 HBn)	200	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00094	.00113	.00150	.00188	.00225
	403, 410, 416, 420, 440, 430, 446	38-45 Rc (353-421 HBn)	100	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00080	.00096	.00128	.00159	.00191
	15-5, 17-4, Carpenter 450,	29-37 Rc (279-344 HBn)	150	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00084	.00101	.00135	.00169	.00203
PH Stainless Steel	Carpenter 465	38-45 Rc (353-421 HBn)	90	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00072	.00086	.00115	.00143	.00172
	Hastelloy C-22, Inconel 625,	29-37 Rc (279-344 HBn)	70	.00010	.00014	.00017	.00020	.00028	.00041	.00055	.00081	.00098	.00130	.00163	.00195
Nickel Alloy	Waspaloy, René 41, Inconel 718, – Incoloy 20	38-45 Rc (353-421 HBn)	50	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00069	.00083	.00111	.00138	.00166
		29-37 Rc (279-344 HBn)	150	.00012	.00016	.00021	.00025	.00033	.00049	.00066	.00096	.00116	.00154	.00193	.00231
Titanium Alloy	Ti 3Al-2.5V, Ti 6Al-4V, Ti 10V-2Fe-3Al –	38-45 Rc (353-421 HBn)	75	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00082	.00098	.00131	.00164	.00196
	2014, 5062, 6061, 7050, 7075, 7475	≤ 28 Rc (≤ 271 HBn)	1000	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
Wrought Aluminum Alloy	5% - 8% Si (4XXX)		1000	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371
	8% - 12% Si (4XXX)		800												
	319.0, 328.0, 355.0, 360.0, 380.0, 383.0, 390.0, 520.0, 535.0	≤ 28 Rc (≤ 271 HBn)	750	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
	3% - 5% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		750	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154		.00248	.00309	.00371
Cast Aluminum Alloy	5% - 8% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		700									.00186			
	8% - 12% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		650												
	12% - 16% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		475												
Copper Alloy	Cu-ETP, CuBe2, CuZn30, CuZn36Pb3, CuZn10, CuSn5	≤ 28 Rc (≤ 271 HBn)	225-550	.00014	.00019	.00024	.00029	.00038	.00068	.00091	.00144	.00173	.00231	.00288	.00346
Magnesium Alloys		≤28 Rc (≤271 HBn)	1500	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413
Zinc Alloys			800	.00015	.00020	.00025	.00030	.00040	.00084	.00113	.00172	.00206	.00275	.00344	.00413

General Notes:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 10%-20% if coated. For ferrous materials with hardness \leq 28 Rc, chip loads can be increased 10%-20%.

If you require additional information, Valor Holemaking has a team of technical experts available to assist you through even the most challenging applications. Please contact us at 866-840-1505 or Valortech@harveyperformance.com.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.