

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool # TM-080-8 to machine a 4-40 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00016
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed =
$$[(.112 - .080) / .112] \times 2.29$$
 = 0.6

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed =
$$[(.112 + .080) / .112] \times 2.29$$
 = 3.9

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

For Easy Machinability = 2 Radial Pass at full Axial Depth For Moderate Machinability = 3 Radial Passes at full Axial Depth For Difficult Machinability = 4 Radial Passes at full Axial Depth

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 7162 RPM, 0.6 IPM and make 3 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major	Number of Radial Passes*											
Thread	Thread	Easy	Moderate	Difficult									
Size	Diameter	Machinabilty	Machinabilty	Machinabilty									
00	0.047	2	3	4									
0	0.060	2	3	4									
1	0.073	2	3	4									
2	0.086	2	3	3									
3	0.099	2	3	3									
4	0.112	2	3	4									
5	0.125	2	3	3									
6	0.138	2	3	4									
8	0.164	2	2	3									
10	0.190	2	3	4									
12	0.216	2	2	3									
1/4	0.250	2	2	3									
5/16	0.312	2	2	3									
3/8	0.375	2	2	3									
7/16	0.437	2	2	3									
1/2	0.500	2	2	3									
9/16	0.562	2	2	3									
5/8	0.625	2	2	3									
3/4	0.750	2	2	3									
7/8	0.875	2	2	3									
1	1.000	2	3	4									

Table 1

Number of Radial Passes are based on the coarsest pitch by thread size. For finer itches, the number of passes may be reduced by 1 pass.

Table 2

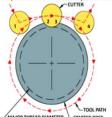
INTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up

from bottom
Step 3-4: Cutter moves helically Step 4-5: Cutter exits part along arcing tool path

while maintaining "Z" feed Step 5-6: Cutter returns to center

INTERNAL, LEFT HAND THREAD (CLIMB MILLING)

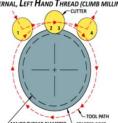

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing from top

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path

Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)



Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down

from top
Step 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

MATERIAL						Hardness										
MATERIAL	SFM	0.047	Chip Load (IPT) By Cutter Diameter 0.047													
ALUMINUM ALLOYS		0.0-1.	0.002	0.070	0.000	0.120	0.101	0.200	0.0.2	0.070	0.000	0.020	000			
Casting (2xx, 5xx, 7xx, 8xx)	750	.00013	.00017	.00021	.00025	.00034	.00072	.00096	.00146	.00175	.00234	.00292	.00351			
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000															
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750															
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700		.00015	.00019	.00023	.00031	.00064	.00086	.00131	.00158	.00210	.00263	.00316			
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00012														
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475															
Wrought - 5%-8% Si (4xxx)	1000															
Wrought - 8%-12% Si (4xxx)	800															
MAGNESIUM ALLOYS	1500	.00013	.00017	.00021	.00025	.00034	.00072	.00096	.00146	.00175	.00234	.00292	.00351			
ZINC ALLOYS	800	.00013	.00017	.00021	.00023	.00034	.00072	.00030			.00234		.00331			
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225															
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500															
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225															
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00012	.00016	.00020	.00024	.00033	.00058	.00078	.00122	.00147	.00196	.00245	.00294			
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500															
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225															
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550															

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads **Characteristics:** Extra Long Length **Series:** TM-XXX-X, TM-XXX-XX

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Micro100 has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-421-8065 or** micro100tech@harveyperformance.com.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)																Ha	ardness:	38-45 Rc	(353-421	l HBn)												
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter											SFM	Chip Load (IPT) By Cutter Diameter																				
	Ŭ. III	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750	Ö	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750								
CARBON STEELS																																		
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00010	.00013	.00016	.00019	.00026	.00057	.00077	.00119	.00143	.00191	.00239	.00287	-	-	-	-	-	-	-	-	-	-	-	-	-								
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00010	.00013	.00016	.00019	.00026	.00057	.00077	.00106	.00128	.00170	.00213	.00255	-	-	-	-	-	-	-	-	-	-	-	-	-								
TOOL STEELS																																		
A, L, O, P, W series	200	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00093	.00112	.00150	.00187	.00224	100	.00009	.00012	.00015	.00018	.00024	.00036	.00048	.00079	.00095	.00127	.00159	.00191								
D, H, M, T, S series	200	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00085	.00102	.00136	.00170	.00204	90	.00008	.00011	.00014	.00016	.00022	.00032	.00043	.00072	.00087	.00116	.00145	.00173								
STAINLESS STEELS																																		
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00010	.00013	.00016	.00019	.00026	.00057	.00077	.00119	.00143	.00191	.00239	.00287	-	-	-	-	-	-	-	-	-	-	-	-	-								
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00080	.00096	.00128	.00159	.00191	100	.00008	.00011	.00014	.00016	.00022	.00032	.00043	.00068	.00081	.00108	.00135	.00163								
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00010	.00013	.00016	.00019	.00026	.00038	.00051	.00072	.00086	.00115	.00143	.00172	90	.00008	.00011	.00014	.00016	.00022	.00032	.00043	.00061	.00073	.00098	.00122	.00146								
TITANIUM ALLOYS	150	.00011	.00014	.00018	.00021	.00028	.00042	.00056	.00082	.00098	.00131	.00164	.00196	75	.00009	.00012	.00015	.00018	.00024	.00036	.00048	.00069	.00083	.00111	.00139	.00167								
HIGH TEMP ALLOYS	\neg																																	
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00009	.00012	.00015	.00017	.00023	.00035	.00047	.00069	.00083	.00111	.00138	.00166	50	.00007	.00010	.00012	.00015	.00020	.00030	.00040	.00059	.00070	.00094	.00117	.00141								