

Metric Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #890330 to machine an M6-32 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00052
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

```
RPM = (SFM \times 3.82) / Cutter Diameter
     = (150 \times 3.82) / .189
     =3031
Linear Feed (IPM) = RPM \times IPT \times Number of Flutes
                    = 3031 \times .00052 \times 2
                    = 3.15 in/min
```

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adi Internal Feed = [(Maior Thread Dia - Cutter Dia) / Maior Thread Dia] x Linear Feed
                  = [(.236 - .189) / .236] \times 3.15
                  = .63 in/min
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(.236 + .189) / .236] \times 3.15
                  = 5.67 in/min
```

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

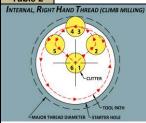
```
For Easy Machinability
                            = 2 Radial Pass at full Axial Depth
For Moderate Machinability = 3 Radial Passes at full Axial Depth
For Difficult Machinability = 4 Radial Passes at full Axial Depth
```

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 3031 RPM, .63 IPM and make 3 Radial Passes

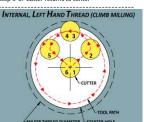

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1													
Tool		Thread		Number of Radial Passes*									
Thread	Dian		Easy	Moderate	Difficult								
Size	Millimeters	Inches	Machinabilty	Machinabilty	Machinabilty								
M1.6	1.50	0.059	2	3	4								
M2	2.00	0.079	2	3	4								
M2.5	2.50	0.098	2	3	4								
M3	3.00	0.118	2	3	4								
M3.5	3.50	0.138	2	3	4								
M4	4.00	0.157	2	3	4								
M5	5.00	0.197	2	3	4								
M6	6.00	0.236	2	3	4								
M8	8.00	0.315	2	2	3								
M10	10.00	0.394	2	2	3								
M12	12.00	0.472	2	2	3								
M14	14.00	0.551	2	2	3								
M15	15.00	0.591	2	2	3								
M16	16.00	0.630	2	2	3								
M17	17.00	0.669	2	2	3								
M18	18.00	0.709	2	2	3								
M20	20.00	0.787	2	2	3								
M22	22.00	0.866	2	2	3								
M24	24.00	0.945	2	2	3								

Number of Radial Passes are based on the coarsest pitch by thread size. For finer pitches, the umber of passes may be reduced by 1 pass

Table 2

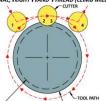


Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up from bottom

Step 3-4: Cutter moves helically

Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed

Step 5-6: Cutter returns to center

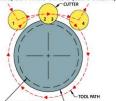

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down

from ton

Step 3-4: Cutter moves helically
Step 4-5: Cutter exits part along arcing tool path

while maintaining "Z" feed Step 5-6: Cutter returns to center

EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)



Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down from ton

Step 2-3: Cutter moves helically

Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up

from bottom

Step 2-3: Cutter moves helically
Step 3-4: Cutter exits part along arcing tool path

ALUMINUM ALLOYS Casting (2xx, 5xx, 7xx, 8xx) Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 1xxx, 8xxx) Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xxx, A4xx, B4xx) Casting - 5%-8% Si (3xx, A3xx, C3xx, 7xxx, A4xx, B4xx)	750 1000 750 700 650	.00017	.00023	.00029	.00034	0.125 .00046	0.187 0.0097	0.250 0.0129	0.312 0.00197	.00237	0.500	0.625	0.750
Casting (2xx, 5xx, 7xx, 8xx) Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 1xxx, 8xxx) 10 Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xx, A4xx, A4xx, B4xx) 7 Casting - 5%-8% Si (3xx, A3xx, C3xx, 7xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, A4xx, B4xx)	1000 750 700												
Casting (2xx, 5xx, 7xx, 8xx) Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 1xxx, 8xxx) 10 Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xx, A4xx, A4xx, B4xx) 7 Casting - 5%-8% Si (3xx, A3xx, C3xx, 7xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, A4xx, B4xx)	1000 750 700	.00017	.00023	.00029	.00034	.00046	.00097	.00129	.00197	.00237	.00316	00395	
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 17xxx, 8xxx) 10 Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xxx, 4xxx, 44xx) 7 Casting - 5%-8% Si (3xx, A3xx, C3xx, 7xxx, 4xx, 44xx, 84xx) 7 Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, 6xx, 6xx, 6xx, 6xx, 6xx, 6xx,	750 700	.00017	.00023	.00029	.00034	.00046	.00097	.00129	.00197	.00237	.00316	00395	l .
7xxx, 8xxx) Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xx, A4xx, B4xx) Casting - 5%-8% Si (3xx, A3xx, C3xx, 7x4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 7x4xx, A4xx, B4xx)	750 700	.55017	.55025	.00023	.00004	.00040	.00037	.00123	.00137	.00207			.00474
7xxx, 8xxx) Casting - 3%-5% Si (3xx, A3xx, C3xx, 7xx, A4xx, B4xx) Casting - 5%-8% Si (3xx, A3xx, C3xx, 7x4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 7x4xx, A4xx, B4xx)	750 700											.00000	.00474
// (Axx, A4xx, B4xx) Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 6xx, 6xx, 6xx, 6xx, 6xx, 6xx, 6xx,	700												
4xx, A4xx, B4xx) Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx, 7xx, A4xx, A4xx, B4xx)	700												
4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx,													
4xx, A4xx, B4xx) Casting - 8%-12% Si (3xx, A3xx, C3xx,													
	650												
	650	.00016	.00021	.00026	.00031	.00041	.00087	.00116	.00178	.00213	.00285	.00356	.00427
		.00016	.00021	.00026	.00031	.00041	.00087	.00116	.00178	.00213	.00285	.00356	.00427
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx) 4	475												
	1000												
, ,													
Wrought - 8%-12% Si (4xxx) 8	800												
MAGNESIUM ALLOYS 15	1500												
MAGNESION ALEG IS	.000	.00017	.00023	.00029	.00034	.00046	.00097	.00129	.00197	.00237	.00316	.00395	.00474
		.00017	.00023	.00023	.00034	.00040	.00037	.00123	.00137	.00237	.00310	.00333	.00474
ZINC ALLOYS 8	800												
COPPER ALLOYS 2	225												
High Coppers - 90%+ (C1xxxx)	223												
Brass (Copper Zinc alloys, C2xxxx, C3xxxx, C4xxxx, C66400-C69800)	500												
Dh h D (O Th II	225												
C5xxxx)													
uminum Bronzes (Copper Aluminum ovs. C60600-C64200) 500		.00017	.00022	.00028	.00033	.00044	.00078	.00105	.00165	.00199	.00265	.00331	.00398
Silicon Bronzes (Copper Silicon alloys,	500												
C64700-C66100) Copper Nickels, Nickel Silvers													
(Copper Nickel alloys, C7xxxx)	225												1
Cast Copper Alloys (C83300-C86200,													1
C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550						1				l		1

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - Metric

Characteristics: 3x Neck

Series: 8903xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

MATERIAL		Hardness: 29-37 Rc (279-344 HBn) Chip Load (IPT) By Cutter Diameter												Hardness: 38-45 Rc (353-421 HBn) Chip Load (IPT) By Cutter Diameter												
MATERIAL	SFM	0.047	0.000	0.076	0.000					0.075	0.500	0.005	0.750	SFM	0.047	0.000	0.076	0.000					0.075	0.500	0.005	0.750
CARBON STEELS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00013	.00017	.00022	.00026	.00035	.00077	.00104	.00161	.00194	.00259	.00323	.00388	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 50Lxxx, 52xx & 52Lxxx, 6xxx, 52xxx, 52xxx	200	.00013	.00017	.00022	.00026	.00035	.00077	.00104	.00144	.00173	.00230	.00288	.00345	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00013	.00017	.00022	.00026	.00035	.00077	.00104	.00161	.00194	.00259	.00323	.00388	-	-	-	-	-	-	-	-	-	-	-	÷	Ē
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00013	.00017	.00022	.00026	.00035	.00052	.00069	.00108	.00129	.00173	.00216	.00259	100	.00011	.00015	.00018	.00022	.00029	.00044	.00059	.00091	.00110	.00147	.00183	.00220
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00013	.00017	.00022	.00026	.00035	.00052	.00069	.00097	.00116	.00155	.00194	.00233	90	.00011	.00015	.00018	.00022	.00029	.00044	.00059	.00082	.00099	.00132	.00165	.00198
TOOL STEELS A, L, O, P, W series	200	.00014	.00019	.00024	.00028	.00038	.00057	.00076	.00126	.00152	.00202	.00253	.00304	100	.00012	.00016	.00020	.00024	.00032	.00048	.00065	.00107	.00129	.00172	.00215	.00258
D, H, M, T, S series	200	.00013	.00017	.00022	.00026	.00035	.00052	.00069	.00115	.00138	.00184	.00230	.00276	90	.00011	.00015	.00018	.00022	.00029	.00044	.00059	.00098	.00117	.00156	.00196	.00235
TITANIUM ALLOYS	150	.00014	.00019	.00024	.00028	.00038	.00057	.00076	.00111	.00133	.00177	.00221	.00266	75	.00012	.00016	.00020	.00024	.00032	.00048	.00065	.00094	.00113	.00151	.00188	.00226
HIGH TEMP ALLOYS														—												
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00012	.00016	.00020	.00024	.00032	.00047	.00063	.00093	.00112	.00150	.00187	.00224	50	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00079	.00095	.00127	.00159	.00191