

Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #772950 to machine a 1/4-20 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .00051
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

$$RPM = (SFM \times 3.82) / Cutter Diameter = (150 \times 3.82) / .180$$

$$= (150 \times 3.82)$$

= 3183

Linear Feed (IPM) = RPM x IPT x Number of Flutes = $3183 \times .00051 \times 4$ = 6.49

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed = [(.250 - .180) / .250] x 6.49 = 1.82

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed = $[(.250 + .180) / .250] \times 6.49$

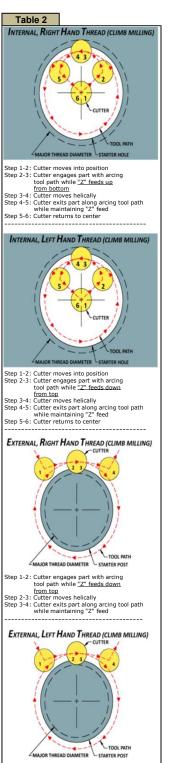
= 11.16

- 4. Determine Number of Radial Passes using Table 1
- (Note: The number of passes should be based on the thread size of the tool, and not the machined part)

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion


In this example, the tool would run at 3183 RPM, 1.82 IPM and make 3 Radial Passes

Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1 Tool	Major	Numbe	er of Radial P	26606*				
Thread	Thread	Easy	Moderate	Difficult				
Size	Diameter	Machinabilty	Machinabilty	Machinabilty				
00	0.047	2	3	4				
0	0.060	2	3	4				
1	0.073	2	3	4				
2	0.086	2	3	3				
3	0.099	2	3	3				
4	0.112	2	3	4				
5	0.125	2	3	3				
6	0.138	2	3	4				
8	0.164	2	2	3				
10	0.190	2	3	4				
12	0.216	2	2	3				
1/4	0.250	2	2	3				
5/16	0.312	2	2	3				
3/8	0.375	2	2	3				
7/16	0.437	2	2	3				
1/2	0.500	2	2	3				
9/16	0.562	2	2	3				
5/8	0.625	2	2	3				
3/4	0.750	2	2	3				
7/8	0.875	2	2	3				
1	1.000	2	3	4				

Number of Radial Passes are based on the coarsest pitch by thread size. For fine itches, the number of passes may be reduced by 1 pass.

		Hardness: ≤ 28 Rc (≤ 271 HBn)													
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter													
	31 14	0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		
ALUMINUM ALLOYS Casting (2xx, 5xx, 7xx, 8xx)	750			.00029	.00035	.00047	.00098	.00132	.00201	.00241	.00322	.00402			
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	.00018	.00023										.00483		
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750														
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700														
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00016	.00021	.00026	.00031	.00042	.00089	.00118	.00181	.00217	.00290	.00362	.00434		
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475														
Wrought - 5%-8% Si (4xxx)	1000														
Wrought - 8%-12% Si (4xxx)	800														
MAGNESIUM ALLOYS	1500	.00018	.00023	.00029	.00035	.00047	.00098	.00132	.00201	.00241	.00322	.00402	.00483		
ZINC ALLOYS	800	.00010	.00020	.00023	.00000	.00047	.00000	.00102	.00201	.00241	.00022	.00402	.00400		
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225														
Brass (Copper Zinc alloys, C2xxx, C3xxxx, C4xxxx, C66400-C69800)	500														
Phosphor Bronzes (Copper Tin alloys, C5xxxx) Aluminum Bronzes (Copper Aluminum	225	.00017		.00028											
alloys, C60600-C64200) Silicon Bronzes (Copper Silicon alloys,	500		.00022		.00033	.00045	.00080	.00107	.00168	.00202	.00270	.00337	.00405		
C64700-C66100) Copper Nickels, Nickel Silvers (Copper	500 225														
Nickel alloys, C7xxxx) Cast Copper Alloys (C83300-C86200,	225														
C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550														

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - UN Threads Characteristics: Short/Medium Reach Series: 7729xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness ≤ 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

		Hardness: 29-37 Rc (279-344 HBn)												Hardness: 38-45 Rc (353-421 HBn)												
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter								0.770	SFM	Chip Load (IPT) By Cutter Diameter														
CARBON STEELS		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00013	.00017	.00022	.00026	.00035	.00079	.00105	.00164	.00197	.00263	.00329	.00395	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00013	.00017	.00022	.00026	.00035	.00079	.00105	.00146	.00176	.00234	.00293	.00351	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00013	.00017	.00022	.00026	.00035	.00079	.00105	.00164	.00197	.00263	.00329	.00395	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00013	.00017	.00022	.00026	.00035	.00053	.00070	.00110	.00132	.00176	.00219	.00263	100	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00093	.00112	.00149	.00186	.00224
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00013	.00017	.00022	.00026	.00035	.00053	.00070	.00099	.00118	.00158	.00197	.00237	90	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00084	.00101	.00134	.00168	.00201
TOOL STEELS																										
A, L, O, P, W series	200	.00015	.00019	.00024	.00029	.00039	.00058	.00077	.00128	.00154	.00206	.00257	.00309	100	.00012	.00016	.00020	.00024	.00033	.00049	.00066	.00109	.00131	.00175	.00219	.00263
D, H, M, T, S series	200	.00013	.00017	.00022	.00026	.00035	.00053	.00070	.00117	.00140	.00187	.00234	.00281	90	.00011	.00015	.00019	.00022	.00030	.00045	.00060	.00099	.00119	.00159	.00199	.00239
TITANIUM ALLOYS	150	.00015	.00019	.00024	.00029	.00039	.00058	.00077	.00112	.00135	.00180	.00225	.00270	75	.00012	.00016	.00020	.00024	.00033	.00049	.00066	.00096	.00115	.00153	.00191	.00230
HIGH TEMP ALLOYS																										
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00012	.00016	.00020	.00024	.00032	.00048	.00064	.00095	.00114	.00152	.00190	.00228	50	.00010	.00014	.00017	.00020	.00027	.00041	.00055	.00081	.00097	.00129	.00162	.00194