SHARVEY TOOL

Metric Single Form Thread Milling Guide

Single Form Threadmills are the most versatile threading tool due to their ability to mill multiple pitch sizes. Since they are used in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum to Steels.

Speeds & Feeds calculations:

R

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool **#737619** to machine an M2-0.40 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 150 and Chip Load (IPT) is .0001241
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

= (150 x 3.82) / 0.0591

= 9695

Linear Feed (IPM) = RPM x IPT x Number of Flutes = 9695 x .0001241 x 2 = 2.41 in/min

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed = $[(.079 - 0.0591) / .079] \times 2.41$

= .607 in/min

Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed = [(.079 + .0591) / .079] x 2.41 = 4.21 in/min

4. Determine Number of Radial Passes using Table 1

(Note: The number of passes should be based on the thread size of the tool, and not the machined part)

For Easy Machinability	= 2 Radial Pass at full Axial Depth
For Moderate Machinability	= 3 Radial Passes at full Axial Depth
For Difficult Machinability	= 4 Radial Passes at full Axial Depth

Definitions:

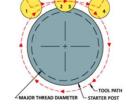
Easy Machinability materials include Non-Ferrous alloys and Leaded Steels

Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion

In this example, the tool would run at 9695 RPM, .607 IPM and make 3 Radial Passes

Setup & Use:


- 1. Check software and input proper feed values (Linear or Adjusted)
- Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. Break in tool by reducing feed rates by 25% on first 1-2 holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Tool	Major 1		Number of Radial Passes*									
Thread	Diam		Easy	Moderate	Difficult							
Size	Millimeters	Inches	Machinabilty	Machinabilty	Machinabilty							
M1.6	1.50	0.059	2	3	4							
M2	2.00	0.079	2	3	4							
M2.5	2.50	0.098	2	3	4							
М3	3.00	0.118	2	3	4							
M3.5	3.50	0.138	2	3	4							
M4	4.00	0.157	2	3	4							
M5	5.00	0.197	2	3	4							
M6	6.00	0.236	2	3	4							
M8	8.00	0.315	2	2	3							
M10	10.00	0.394	2	2	3							
M12	12.00	0.472	2	2	3							
M14	14.00	0.551	2	2	3							
M15	15.00	0.591	2	2	3							
M16	16.00	0.630	2	2	3							
M17	17.00	0.669	2	2	3							
M18	18.00	0.709	2	2	3							
M20	20.00	0.787	2	2	3							
M22	22.00	0.866	2	2	3							
M24	24.00	0.945	2	2	3							

Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds up from bottom Step 3-4: Cutter moves helically Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed Step 5-6: Cutter returns to center INTERNAL, LEFT HAND THREAD (CLIMB MILLING) Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down from top Step 3-4: Cutter moves helically Step 4-5: Cutter exits part along arcing tool path while maintaining "Z" feed Step 5-6: Cutter returns to center EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING) CUTTER

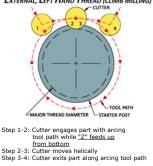

INTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

Table 2

Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down from top Step 2-3: Cutter moves helically Step 3-4: Cutter exits part along arcing tool path

while maintaining "Z" feed External, Left Hand Thread (climb milling)

		Hardness: ≤ 28 Rc (≤ 271 HBn)														
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter														
		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750			
ALUMINUM ALLOYS Casting (2xx, 5xx, 7xx, 8xx)	750															
Wrought (1xxx, 2xxx, 3xxx, 5xxx, 6xxx, 7xxx, 8xxx)	1000	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371			
Casting - 3%-5% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	750															
Casting - 5%-8% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	700				.00024	.00032	.00068	.00091	.00139	.00167	.00223					
Casting - 8%-12% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	650	.00012	.00016	.00020								.00278	.00334			
Casting - 12%-16% Si (3xx, A3xx, C3xx, 4xx, A4xx, B4xx)	475															
Wrought - 5%-8% Si (4xxx)	1000															
Wrought - 8%-12% Si (4xxx)	800															
MAGNESIUM ALLOYS	1500	.00014	.00018	.00022	.00027	.00036	.00076	.00101	.00154	.00186	.00248	.00309	.00371			
ZINC ALLOYS	800	.00014	.00010	.00022	.00027	.00030	.00070	.00101	.00134	.00100		.00303	.00371			
COPPER ALLOYS High Coppers - 90%+ (C1xxxx)	225															
Brass (Copper Zinc alloys, C2xxx, C3xxx, C4xxx, C66400-C69800)	500															
Phosphor Bronzes (Copper Tin alloys, C5xxxx)	225															
Aluminum Bronzes (Copper Aluminum alloys, C60600-C64200)	500	.00013	.00017	.00022	.00026	.00035	.00061	.00082	.00129	.00156	.00207	.00259	.00311			
Silicon Bronzes (Copper Silicon alloys, C64700-C66100)	500															
Copper Nickels, Nickel Silvers (Copper Nickel alloys, C7xxxx)	225															
Cast Copper Alloys (C83300-C86200, C86400-C87900, C9200-C95800, C97300-C97800, C99400-C99700)	550															

Speeds & Feeds

Product Table: Thread Milling Cutters - Single Form - Metric Characteristics: 7x Neck Series: 7376xx

Please note:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 5%-10% if coated. For ferrous materials with hardness \leq 28 Rc, chip loads can be increased 3%-5%.

If you require additional information, Harvey Tool has a team of technical experts available to assist you through even the most challenging applications. Please contact us at **800-645-5609** or **Harveytech@harveyperformance.com**.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.

Hardness: 29-37 Rc (279-344 HBn)										Hardness: 38-45 Rc (353-421 HBn)																
MATERIAL	SFM	Chip Load (IPT) By Cutter Diameter									SFM	SFM Chip Load (IPT) By Cutter Diameter														
		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750		0.047	0.062	0.078	0.093	0.125	0.187	0.250	0.312	0.375	0.500	0.625	0.750
CARBON STEELS Free-Machining/Low Carbon steels, 10xx - 1029 & all 10Lxx, 11xx - 1139 & all 11Lxx, 12xx - 1215 & all 12Lxx	600	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00126	.00152	.00203	.00253	.00304	-	-	-	-	-	-	-	-	-	-	-	-	-
1030 - 1095, 1140 - 1151, 13xx, 15xx, 2xxx, 3xxx, 4xxx & 4xLxx, 5xxx & 5xLxx, 51xxx & 50Lxxx, 51xxx & 51Lxxx, 52xxx & 52Lxxx, 6xxx, 8xxx, 9xxx	200	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00112	.00135	.00180	.00225	.00270	-	-	-	-	-	-	-	-	-	-	-	-	-
STAINLESS STEELS																										
203 EZ, 303 (all types), 416, 416Se, 416 Plus X, 420F, 420FSe, 430F, 430FSe, 440F, 440FSe	450	.00010	.00013	.00017	.00020	.00027	.00061	.00081	.00126	.00152	.00203	.00253	.00304	-	-	-	-	-	-	-	-	-	-	-	-	-
201, 202, 203, 205, 301, 302, 304, 304L, 308, 309, 310, 314, 316, 316L, 317, 321, 329, 330, 347, 348, 385, 403, 405, 409, 410, 413, 420, 429, 430, 434, 436, 442, 446, 501, 502	200	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00084	.00101	.00135	.00169	.00203	100	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00072	.00086	.00115	.00143	.00172
414, 431, 440A, 440B, 440C, 13-8, 15-5, 15-7, 17-4, 17-7	150	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00076	.00091	.00122	.00152	.00182	90	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00064	.00077	.00103	.00129	.00155
TOOL STEELS				-	,	· · · · ·	1																			
A, L, O, P, W series	200	.00011	.00015	.00019	.00022	.00030	.00044	.00059	.00099	.00119	.00158	.00198	.00238	100	.00009	.00013	.00016	.00019	.00025	.00038	.00050	.00084	.00101	.00135	.00168	.00202
D, H, M, T, S series	200	.00010	.00013	.00017	.00020	.00027	.00040	.00054	.00090	.00108	.00144	.00180	.00216	90	.00009	.00011	.00014	.00017	.00023	.00034	.00046	.00076	.00092	.00122	.00153	.00184
TITANIUM ALLOYS	150	.00011	.00015	.00019	.00022	.00030	.00044	.00059	.00086	.00104	.00139	.00173	.00208	75	.00009	.00013	.00016	.00019	.00025	.00038	.00050	.00074	.00088	.00118	.00147	.00177
HIGH TEMP ALLOYS					· · · · · ·	· · · · ·	()																			
Inconel, Hastelloy, Waspalloy, Monel, Nimonic, Haynes, Discoloy, Incoloy	70	.00009	.00012	.00015	.00018	.00025	.00037	.00050	.00073	.00088	.00117	.00146	.00176	50	.00008	.00010	.00013	.00016	.00021	.00031	.00042	.00062	.00075	.00099	.00124	.00149